1

Fundamentals of Solid State Physics

Superconductivity

Xing Sheng 盛兴

Department of Electronic Engineering Tsinghua University <u>xingsheng@tsinghua.edu.cn</u>

Resistivity ρ vs. Temperature

Metals and semiconductors have different temperature dependences of ρ

$$\sigma = ne\mu$$

Resistivity ρ of Metals

- The Classical Model
 - Resistivity is always > 0 for metals, because of phonon scattering

- Resistivity drops to 0 at transition temperature T_c
- Phonon scattering suddenly disappears

- Onnes's main focus is to get liquid helium (T = 4 K).
- Discovery of superconductivity is serendipity

H. Onnes (昂尼斯) 1913 Nobel Prize in Physics for Low Temperature Physics

	IA																	0	
1	1		KNOWN SUPERCONDUCTIVE															2	
I	н	ELEMENTS													YA	YIA	VIIA	не	
2	3	4 . D.a.	_		·	— —	 11 (**) (*)	5	6	7	8	9	10 N.A.						
-	LI	Вê		RDCC	. = AI INI_ (AIME NII V		в	С С	N	<u> </u>		Ne						
3	11 Na	12 Ma														18 Ar			
Ÿ	110	my	IIIB	IYB	YB	YIB	YIIB		— YII —		IB	IIB	AI	51		J			
4	19 • 2	20	21	22	23	24	25	26	27	28 • • :	29 	30	31	32	33	34	35 D-	36 K-	
	ĸ	Ca	SC		¥	UT .	MII	ге	U 0	NI	UU.	20	Ga	Ge	AS	зe	BI	ĸſ	
5	37 DK	38 Se	39 🖌	40 7 -	41 ЫБ	42	43 Te	44 D	45 Пњ	46 D.4	47	48 C 4	49 1 0	50 S.n.	51 Sh	52 To	53	54 VA	
	κν	.JI		21		MU	10	HU	HII	Pu	Ay	Cu.	••••	511	30	Te		VG	
6	55 CC	56 Do	57 ★1 つ	72 LUE	73 Ta	74 W	75 D o	76 O C	77 Jæ	78 DF	79 •••	80 Ца	81 TI	82 D M	83 Di	84 По	85 IF	86 De	
•	S	Da	^La		Iđ	F	ĸe	US	- 11	PL	AU	пy		PU	ы	PV	Αι	RII	
7	87	88	89	104	105	106	107	108	109	110	111	112							
•		на	+AC	KI	на	100	101	וטא	103	110		112	SUPERCONDUCTORS.OR						

*Lanthanide	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
+ Actinide	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

6

Nobel Prizes in Superconductivity

- I913 Low temperature physics
- IP 1972 BCS theory of superconductivity
- Igram 1973 Tunneling effects in superconductors
- Igh temperature superconductors
- 2003 Theory of superconductors

BCS Theory

Pairs of electrons (Cooper's Pairs) move in the lattice coherently without phonon scattering

BCS Theory

Pairs of electrons (Cooper's Pairs) move in the lattice coherently without phonon scattering

A Cooper Pair of electrons moving in the lattice

J. Bardeen, L. Cooper, J. Schreffer, Phys. Rev. 108, 1175 (1957)

Bardeen, Cooper and Schreiffer 1972 Nobel Prize in Physics

BCS Theory

Pairs of electrons (Cooper's Pairs) move in the lattice coherently without phonon scattering

A Cooper Pair of electrons moving in the lattice

J. Bardeen, L. Cooper, J. Schreffer, Phys. Rev. 108, 1175 (1957)

Bardeen, Cooper and Schreiffer 1972 Nobel Prize in Physics

Chasing High *T_c*

- The BCS theory cannot explain superconductors with T_c > 40 K
- Theory for high T_c superconductors is still not complete

R. Hemley, et. al., Proc. Ramon Areces Symp. (2018)

- Meissner effect 迈斯纳效应
 - Superconductors repel all the magnetic field inside
 - **perfectly diamagnetic (** $\chi = -1$ **)**
 - □ Inside, B = $\mu_0 \mu_r H = \mu_0 (1 + \chi) H = 0$

- Meissner effect 迈斯纳效应
 - Superconductors repel all the magnetic field inside
 - **perfectly diamagnetic (** $\chi = -1$ **)**
 - □ Inside, $B = \mu_0 \mu_r H = \mu_0 (1 + \chi) H = 0$
- A superconductor is not just a perfect conductor
 - **•** Meissner effect cannot be simply explained by $\rho = 0$
 - It can only be understood by quantum mechanics

- Meissner effect 迈斯纳效应
 - Superconductors repel all the magnetic field inside
 - **perfectly diamagnetic (** $\chi = -1$ **)**
 - □ Inside, $B = \mu_0 \mu_r H = \mu_0 (1 + \chi) H = 0$

https://wonderfulengineering.com/these-15-magnetgifs-will-show-you-the-power-of-magnetism/

- Meissner effect 迈斯纳效应
 - Superconductors repel all the magnetic field inside
 - **perfectly diamagnetic (** $\chi = -1$ **)**
 - □ Inside, B = $\mu_0 \mu_r H = \mu_0 (1 + \chi) H = 0$

MagLev (磁悬浮列车)

Thank you for your attention